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Convergence Properties and Numerical Approximation 
of the Solution of the Mindlin 

Plate Bending Problem 

By Roger Pierre 

Abstract. We study the behavior of the solution of the Mindlin problem when the 
thickness becomes small, paying particular attention to the shear stress. We also pro- 
pose a modification of a known scheme that allows the use of linear finite element 
approximation and we prove optimal error bounds. 

1. Introduction. In plate theory many useful formulations are obtained by 
replacing, in the three-dimensional model of linear elasticity, the space of dis- 
placements and stresses by a well-chosen subspace in such a way as to obtain a 
two-dimensional problem which contains the thickness t as a parameter. In [5], 
Destuynder analyzed this approach thoroughly and showed that some of the result- 
ing models were plagued with boundary layer effect when the thickness is tending 
to zero. This effect is often linked to the "locking phenomenon" discussed in the 
engineering literature and is known to complicate the numerical determination of 
some of the variables. 

In [3], Brezzi and Fortin studied one of these approximations, namely the 
Mindlin-Reissner model, for which they proposed a different formulation allowing 
efficient calculation of the critical unknowns. We come back to their decomposition 
procedure and show that it can be used in conjunction with singular perturbation 
to give a rather complete description of the limit process. We also prove that, 
under a slight modification, this method can be adapted to the use of linear finite 
elements for each of the variables, still being optimal and uniformly good as t goes 
to zero. 

The outline of the paper is as follows. We present the model in Section 2 and 
the Brezzi-Fortin decomposition in Section 3. In Section 4 we study an asymptotic 
expansion of the solution and prove a convergence result. Finally, in Section 5, we 
propose a simple discretization and get optimal and uniform error bounds. 

2. Presentation of the Model. Let w be an open bounded simply connected 
set of R2 with a Coo boundary Ay. For t > 0, we denote by 1t the set 1t = 

w x [-t, +t]. We suppose that Ot describes the undeformed configuration of a 
Saint-Venant Kirchhoff plate. If this plate is clamped along its vertical boundary 
^ X [-t,+t] and is acted upon by a vertical body force of density (0,0,f3), the 
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16 ROGER PIERRE 

general displacement problem can be written 

(1) Determine inf f 2 (tr(c(v)))2 + p (tr(0 (v))) - f* v} dx, 

where 6(v) is the strain tensor, A and ,u the Lame coefficients of the material and 
Vt the space of admissible displacements. Replacing Vt by 

(2) Vmt = {v E Vt I v = (-zf, (x, y), -zf2(x, y), w(x, y)), f1, f2, w E Ho (w) 

we obtain a model which is very similar to Mindlin's model as presented in [1] 
but may also be looked upon as a particular case of Nagdhi's model of order one 
studied, for example, in [5]. For v E Vmt, C(v) can be written in the block form 

6(v) = (VW-) 0 ] 

and, upon integrating with respect to the thickness in (1), we are led to the problem 

Determine inf 3a(O,2 dx - f3w dx, 
(13w) 32 

where a(f3, 03) is the two-dimensional deformation energy corresponding to 

(3) a(03, q) = f {2,20(e) + A tr(c(03))I2}: 6(q) dx. 

In [3] Brezzi and Fortin studied the behavior of the solutions of Mindlin's problem 
as the thickness t goes to zero, in the particular case f3 = t2g(x, y)/3. This choice 
was motivated by the necessity of having solutions which were, at least, bounded 
in t. Integrating the last term with respect to z and then dividing throughout by 
2t3/3, we are finally led to the problem 

(4) Determine inf 1a( ,) + ?I2Vw - (g,w) (4) 
Determine(0 (/w) 2 ~ V 42 - 

(with the usual L 2(w)-norm and inner product). For the sake of simplicity, from 
now on we set 

3/2 

Remark 1. In this form, Mindlin's problem is nothing but a penalty formulation 
of Kirchhoff's constrained problem 

inf {2a(,i3 A)-((g,w) J Vw = 

Such a formulation is well known to engineers who are using it in conjunction 
with reduced integration to solve the classical plate problem. (See [7].) 

This version of Mindlin's model differs from the one given in [1] only in the 
values of the constant coefficients appearing in (4). Since the determination of these 
constants depends on technical a priori assumptions, and&since their values do not 
modify the mathematical properties of the solution, we will no longer distinguish 
between the two approaches. 
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3. A Mixed Formulation of the Problem. In [3] Brezzi and Fortin proposed 
a variational formulation of (4) based on an orthogonal decomposition of Vw - 3. 
We would like to show that this decomposition is, in a certain sense, natural. 

Let us denote the functional appearing in (4) by j(fl, w) and compute its Gateaux 
derivative at (/3, w) in the direction (0, (). We get 

D(o,4)j(fl, w) = t (Vw - /, V) - (g, ). 

Hence, at the point (/f, w) where the extremum is attained, we have 

t div(Vw-/l3) = -g. 

Now, if g E L2(w), we can write 9 = -Aq with X E Ho (w) n H2(w) and obtain 

div ( (Vw-/l3)-V ) = 0, 

from which we deduce that there exists a p E H1 (w) /R such that 

t2 
(5) Vw-3 =-(Vq + rot p). 

This reasoning indicates that the following well-known decomposition 

(6) (L2 (w))2 = grad (Ho (w)) do rot (H 1 (w) / R) 

plays a fundamental role and leads us to the following theorem, the proof of which 
can be found in [3]. 

THEOREM A. Let g be in L2 (w) and X E Ho (w) n H2 (w) be the unique solution 
of the Dirichlet problem 

(V5, V+) = (g, I) Vo E Ho (w). 

Problem (4) has a unique solution (fl, w) for which there exists a p E H1 (w) /R 
such that (5) is true. Moreover, (/3, w) is the solution of (4) if and only if (/3, p, w) 
satisfies 

a(/, n) - (rot p, q) = (Vq+, ) Vq E (Ho ()) 2 

(7) (.y) 1 - (/3,rot q) = -(rot p,rot q) Vq EH'(w)I, 

(Vw, V) = (dV() +-(V+, V() V4 E Hl(w). 

Remark 2. Because of its practical importance, we will discuss the behavior of 
the variable 

(8) Ft = t (Vw - 3) 

appearing in (5) and related to the shear stress. 
The following a priori estimates, given in [3], will play a key role in the sequel. 

THEOREM B. Let (/lt,pt,wt) be the solution of (3Y). We have 

(9) 11t112 + Ijwtj12 + IPtj1 + tIptI2 < C19lo, 

with c independent of t. 
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4. Solution Behavior for Small t. To study the behavior of the solution of 
(3) as t goes to zero, we first consider the limit problem: 

a(,a3o,ti)-(porot ,q) = (V+,t,) Vi E (Hol(w))2, 

(3O) -(rot flo, q) = 0 Vq E H1 (w)/R, 

I (VWo, V0 ) = (box V() V8 E HO(w). 
Up to a rotation of the variable A, the first two equations give nothing but a Stokes 
problem, whence they possess a unique solution in (Ho (w))2 x L 2(w)/R. Moreover, 
in view of known regularity results (see [6]), 

PO E H8/R whenever g E H' 

We observe now that, whereas (,9)2 implies that rot Pt r = 0 on aj, this relation 
is generally false for t = 0. This is a boundary layer which affects the convergence 
properties of the solution. To illustrate this, we consider the following formal 
expansion: 

00 

(10) (A3 pt P Wt) = E t2v (2v , P2v, W2v) - 
v=O 

Substituting the right-hand side of (10) in (Y) and identifying the various coeffi- 
cients of successive powers of t, we are led to an infinite sequence of problems: 

a(02j, n) - (rot P2jr1) = 8j,o(V br) V E (Ho(U)) 

- (#32jrot q) = v(rot P2j-2,rot q) Vq EH (w)R, 

(VW2j, Ve) = (32j + 6V','V() Ve E Ho (w), 

where we set P-2 = 0 and use the standard Dirac delta notation. Let us suppose 
that (Yi) possesses a solution and integrate the second equation by parts. In view 
of the above remark, we get that /2 r 7: 0 on -j. Thus, the boundary layer on the p- 
component of the solution is reflected on the successive terms of the approximation 
of iet. This also makes life worse, since both the inf-sup condition 

(11) 
~~~~inf (sup (p, rot q) > co > 0 

pEL2/R \(qEV) IInIIVIIPIIL2/R ) o 

and the ellipticity condition 

(12) a(q,q) > CallqIv 

are valid only on V = (Ho (W))2. Hence, the existence of a solution for the corre- 
sponding problem is not guaranteed. 

The next result helps us overcome this difficulty. 

LEMMA 1. Let H1 be defined by 

Hn = {3 E (H1 (w))2 n = O on-i} 

and equipped with the (H1 (w))2-norm. Iff E (H1(w))2, the problem 

(13) <! a(/3,q)-(rot p,n)1,o = 0 Vn E(Hol))21 
(- (,rot q) = frontt q) Vq E A / 
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possesses a unique solution in H1 x L2/R. Moreover, if f E (H8)2, s > 1, then 

(14) 1II11s + IIPIIHS-1/R ? C011f1|8. 

Proof. We first prove unicity. Let (i01, P1), (/32, P2) be two solutions in Hn x L2/R. 
We have 

, |a(#,-02, r)-(rot(pl-P2), Q)-1,0 =0 oVYE Hol (W) 2, 
- -(1 p- 2, rot q) = O Vlq E H1 /R~l. 

Integrating by parts, we deduce from the second equation that 

(15) rot(lil- 32) = 0 in w and (,1 -6l2) r = 0 on-I. 

Since both functions are in Hn, the second equality implies that /1 - /2 is in 
(Ho'(w))2. Setting q = ,l - /2 in (3 *)1 we infer from (15) and (12) that 01 = /32. 

The fact that P1 = P2 now follows directly from (3*)i and (11). 
To prove existence, we first construct a function #,l E Hn such that div(,3.,) = 0 

and #,/ r = -f r on -y. To this end, we solve the following biharmonic problem 

{A\20=0 inw, 

0 =0 onI, 

VO n=f r on> 

If f E (H'(w))2, then f. r E H'-1/2(Q-) and the problem possesses a solution in 
H'+1 (w) satisfying 

11011,9+1,w ': Cllf 'rlls-112,-r 
':: C1 11f 11,9, 

Setting fl, = rot 0, we get the desired result and the estimate 

(16) 11/118 < Ci If 118. 

Next, we set F(n) =-a(#3, ij). This is a continuous linear functional on (Ho (w))2, 
hence there exists an f1 E (H-1)2 such that 

(fiI II) -1,0 = -apA, TI) 

In particular, for s > 2, one can show, using (3) and the fact that div(l37) = 0, that 
f= , A/3i. In any case, fi will be in (H8-2)2 when f E (H')2 and will satisfy 

11f 11,9-2 < lif 1119 

Similarly, setting f2 = rot(f + #,l), we have that f2 is in H8'1 when f E (H9)2 and 
satisfies 

I If2 I119-l ' C2 11 f 111. 

Now we consider the problem: Find (lw, p) E (Ho (w))2 x L2/R such that 

a(,,, rj) - (p, rot rj) = (f1, )-1,0 oV E (Hol (W))2, 

-(rot fl3, q) = (f2, q) Vq E L2/R. 

As mentioned earlier, this problem is nothing but a Stokes problem and thus pos- 
sesses a unique solution for which the following estimate is valid when f E (Ha)2, 

(17) 11/Iw 118 + IIPIIHS-1/R < C3||f L. 
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To conclude, set (3,lp) = (-Ia + /lwIp) E HA x (L2/R). From (Y')i we deduce that 

a(fl,n)-(rot p,n)-1,o=0 V e (Ho1(w))2. 

Similarly, if in (Y')2 we restrict the test functions to H1/lR and if we integrate 
both sides by parts, we get, using f r + fI3 r = 0 on -y, that 

-(p, rot q) = (f,rot q) Vq E (H1/R). 

This shows that (fl, p) is the desired solution while the estimate (14) is a direct 
consequence of (16) and (17). This completes the proof. 

Coming back to the problems under consideration, we have 

THEOREM 1. Let k > 0, g E Hk(w) be given and set 

Vc=[k] + 1. 

For each 0 < i < Vk problem (9'j) possesses a unique solution (/32jP2jW2j) in 

(Hnf n (Hk+3-2j)2) x (Hk+2-2j/R) x (Ho n Hk+4-2j), 

for which 

(18) II/2jllk+3-2j + lIP2jllHk+2-2j/R + IIW2jllk+4-2j < Cl1gl1k. 

Proof. For a fixed k, the proof proceeds by induction on j. We already analyzed 
the case j = 0, for which P-2 = 0 and the estimate (18) is a direct consequence of 
classical regularity results. 

Now suppose that the result is true for a fixed j < k/2. In that case, j + 1 < V/k, 

and (yj+1)1, (yj+1)2 is a problem of the form (13) with 

f = -rot P2j E (Hk+1-2j)2 C (H1 )2, 
V 

whence it has a solution (/32j+2,P2j+2) in (HAf n Hk+1-2j) x (Hk-2j/R). The 
existence and regularity of w2j+2 as solution of (yj+1)3 is immediate. 

Finally, set s = k + 1 - 2j in (14). We infer from the usual estimate of the 
solution of the Dirichlet problem that 

112j+2I1k+3-2(j+1) + IIP2j+2 IIHk+2-2(j+1)/R 

+ IIw2j+2I1k+4-2(j+l) < Clirot P2jllk+1-2j. 

Thus (18) follows by induction. This completes the proof. 
We conclude this section by giving an estimate for the error between (pt, ptt Wt) 

and (fio, po, wo) in the appropriate norm. For this we need the following result due 
to Destuynder [5, pp. 208-209]. 

LEMMA 2. If p is in H2(w)/R, there exists a G E (H1(w))2 such that 

(19) { r -rotp , 

llo + t110111 < ct1!2, 

where the constant C is independent of t. 
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This leads us to 

THEOREM 2. Let g E L2(w); then we have 

111t - 01I1 + tiPt - Poli + IjWt - W0112 < Ct3!2. 

Proof. Let us first subtract (3%) from (Y) term by term. We get 

(a(ilt -/3o,'i) - (rot(pt-po),ti) =0 VI, E (Hol(W)) 2 

(* - (ilt -60, Irot q) = -(rot pt, rot q) Vq EH ()R, 

l V(wt -wo),V() = ((i30 V- H wo) +-) 

In view of the inf-sup condition (11), we deduce from (YZt*) that 

(20) liPt -POIIL2/R < CI3 - I0oII. 

Let us remark that, since g E L2,po E H2/R. Thus, we may set p = Po in Lemma 
2. Corresponding to the 0 thus obtained, we denote by X the unique solution of 
the Neumann problem 

1 
-(rot X, rot q) = (0, rot q) Vq E H1 /R. 

The following is immediate: 

lxii ? CI0Io < Ct112 
(21) lZXIo = vlrot(0)Io < Ct-12, 

Irot(X+Po) r=0. 

We set n = flt- flo, q = Pt - Po and subtract the first two equations of (Yt*). This 
leads to 

a(f-l o, /3t - fo) = --(rot Pt, rot(pt - po)), 

which we write as 

t2 It _P 1 
a(/3t -/3o ,/ -/3)) + -Po-x 

t2 t2 
= --(rot (po + X), rot (pt -P) )- v (rot (pt - Po - X), rot X)- 

V V 

Integrating the first term on the right by parts and using (21), we get after estima- 
tion 

_aI~ I#oII2 ? -2Ipt - PO - X12 Ca |1|10t-,i 1 +-P-s- 1 

t2 t2 
< V A(X+Po)0IIPt-POJIL2/R + VIPt-Po-XI1IXI1. 

Using (20) and (21), we obtain 

1t - 0112 + t2 Pt - Po - X12 < C[t4(IAxIo + IAPOIO)2 + t2IXI2] < Ct3. 

Thus, using (21) again and the triangle inequality, we finally have 

(22) 11th - tpoIl1 ? tlpt - Poli < Ct3/2. 
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To conclude, we observe that wt - wo is the solution of the homogeneous Dirichlet 
problem 

t2 
Aw = V (/t 

- 1o) - -9. 

Since the right-hand side is in L2, we deduce from (22) that 

Iwt - W012 < C(11#1 - /0o11 + t21glo) < Ct3/2. 

This completes the proof. 
Remark 3. The main interest of this result lies in the fact that it gives L2- 

convergence for the variable Ft, as opposed to the H-1(div)-convergence obtained 
in [3]. As to the rate of convergence, we conjecture that it is optimal for Pt but not 
for the other two variables. 

A similar approach would lead to estimates for the error between the solution 
and the partial sums in (10) (see [5] for many examples of the techniques involved). 

5. Discretization and Error Bounds. We now suppose that w is polyg- 
onal and remark that Theorem B is still valid in that case. Although problem 

(,9)1, (,9)2 is a standard elliptic problem, some care must be taken in the dis- 
cretization because the ellipticity constant goes to zero with t. In order to be able 
to use linear CO finite elements, in the discrete problem we add to the trouble- 
some term a mesh-dependent one of the same form but containing an adjustable 
parameter. 

To be more precise, let {57ih be a sequence of regular triangulations of W. Set 

Ph = |0 E CO(0)iOK E P1i VKES},1 
wh = Ph nfHo(w), Vh = (Wh)2. 

Let Oh be the solution of the discrete Dirichlet problem 

(VqhiVah) = (9,ih) Vah E Wh. 

For a given a > 0, we consider the following discretized version of problem (p9): 
Find (Oh,Ph,Wh) E Vh X Ph X Wh such that 

a(I3h, trh)-(rot Ph,.lh) = (Vq0h,t h) VI/hE Vh, 

(3gh) - (Ih, rot qh) = 1 -(t ? h )(rot Ph, rot qh) Vqh E Ph, 

j (Vwhi V~h) = (ohh ?-Vh, V~h) h E Whh 

We prove the following 

THEOREM 3. If g E L2(W), problem (p9h) has a unique solution such that, if 

(/tipt.wO) is the solution of (p), we have 

(23) 111t - |h|ll + (t + ceh)Ipt - PhIl + IJwt - WhIll < chllgllo, 

where c is independent of h and t. 

Proof. Given Oh, the existence of Wh causes no problem, so we concentrate on 
the first two equations. For this, we define a norm on Vh x Ph by 

I(I~hPh)I1 = 1123h11 + t Ph12, 
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a bilinear form Ah on (Vh x ph)2 by 

Ah((1h,Ph), (rh, qh)) = a(3h, h) - (rot Ph, nh) + (ph, rot qh) 

+ -(t2 + a2 h2)(rot Ph, rot qh ) 

and a linear form Fh on Vh x Ph by 

Fh(qhqh) = (Vqh,qh) 

If we consider the problem 

Ah((3h, Ph), (?h, qh)) = Fh(h, qh) V(qh, qh) E Vh X Ph, 

it follows from the inequality 

Ah((13hPh), (PhaPh)) > Ca|13h| +1-(t2 + a2 h2)IPhI1 > CtII(IhPh)ItI 

that the problem has a unique solution in Vh x Ph. Since this problem is obviously 

equivalent to (19h)l, ('h )2, the same is true for (,'h). 

To get an error estimate for (Pt, Pt), we first replace in (9) q by t/h, q by qh and 

then subtract (.'h)1 from (,9) and (-9h)2 from (6@)2 to get 

a(/3t - 1h, 'lh) - (rot(Pt - Ph), nh) = (V( - kh), n/h), 

-(Pt - Ph, rot qh) - -(t + 2 h2)(rot (Pt -Ph), rot qh) 

122 
- - 1Ra h (rot Pt, rot qh). 

Let (Ph, Ph) E Vh X Ph be arbitrary; the above equations can be rewritten as 

a(h -Ph, 7h) - (rot(13h -Ph), 71h) 

- (V(4) - h), n/h) + aQ(h - pt, n/h) - (rot(1h - Pt), n/h), 

-(13h - , rot qh) - (t2 + a2 h2 )(rot (5h - Ph), rot qh) 

=- -0h - 13t, rot qh~) - !(t2 + a2h2) (rot(h -Pt), rot qh) V 

a2 h2 (rot Pt ,rot qh ). 

From now on, we select an arbitrary but fixed representative of the equivalence 

class of Pt in H1 /R, which we still denote by Pt. In the above equations we then 

set n/h = Ph - Ph, qh = Ph - Ph, subtract side by side, integrate the third term on 

the right by parts and estimate. We get 

CaII 2 13h || 1 +!(t2 + a2 h2)1 1-PhI2 

< IbIOh - q5 1 1 11h - 1hII1 + (IIaIl Pt -Ph I I11 + Pt -Ph Io) II/h Ph 1II1 

+ 1h-PtIOIPh -PhIl +-(t + ah)Ph -PtjlIPh - PhIl 

+ !a 2h2 
IPtj1Iph -Phil. 

In estimating the right-hand side, some care must be taken with the fourth term, 

since IPt 12 might not be bounded in t. Because of that, we split it and consider the 
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t2 and h2 factors separately. Applying the arithmetic-geometric inequality to each 
term, we are led to 

CaI13h 1112 + -(t2 + a2 h2)I 1h-Phi2 
1 V 

3 11 - 0112 + 31 11 
Ca ~~~Ca 

11t ' 
(24) 3 3 - 2 

+CIPt-Phho+ a2h213h13tI0 ?IPh P 
Caa 

+ 3~h2 ph- _PtI2 + 3S h2 IPtI 1 

In view of the definition of Oh, we have 

(25) 11q - OhIIl ?< chIIq5I2 < chIgo. 

Similarly, if we choose for 13h the Vh-interpolate of 13t, we get from (9) 

(26) Ih-3tlo + hIIh - IhI < ch2II/3t112 ? ch2lglo. 

If we choose for 'h the Clement interpolate of Pt (see [4, problem 3.2.3]) we also 
deduce from (9) that 

27 Ph -Ptlo + hltih - PtIl < chIpt l < chlglo, 

(Ifh -PtIl < chIptI2 < cht-1 IgIo. 

Finally, taking (25), (26) and (27) into account, we infer from (24) that 

(28) II/3h - |1h111 + (t + ah) I h - Ph I1 < ChIglo, 

with C independent of t. Now, let W'h be the Wh-interpolate of wt. Arguing as 
above, we get 

II9h -whill < C(hIIwtII2 + h111t112 + t2hIIq112) 
(29) <ChigWh 

< Ch~glo. 

To conclude, one uses the interpolation error estimates (25)-(27), (28), (29) and 
the triangle inequality. 

Remark 4. Concerning Ft, let Ih = (Vkh + rot Ph)/!. We have 

lt - FhIO ? C(Qt - Oh~ + IPt - Phl)' 

<? (h+ t+ha) Igo < ca 11glo, 

where c is independent of h and t. Thus, the L2-error on Ft is uniformly bounded 
in t. 

As to the choice of a, looking at (24), we see that, in (23), c = 0(a) as a 
oo, whereas c = Q(a-1) as a -- 0. Thus, a should be taken moderately big. 
Unfortunately, the determination of the optimal value seems to be a tricky affair 
and will require some numerical experiments. 

We conclude by saying that the above discretization can be used with other types 
of elements, in particular with the bilinear quadrangle to which the above proof 
can be applied mutatis mutandis. On the other hand, as observed in [31, because of 
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the possible unboundedness of Pt 12, the use of higher-order elements is not clearly 
advantageous. 
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